Structure property relationship in (TiZrNbCu)1−xNix metallic glasses
نویسندگان
چکیده
منابع مشابه
Percolation structure in metallic glasses and liquids
The atomic-level structures of liquids and glasses are similar, obscuring any structural basis for the glass transition. To delineate structural differences between them, we characterized the atomic structures using the integrated radial distribution functions (RDF) from molecular dynamics (MD) simulations for several metallic liquids and glasses: Cu46Zr54, Ni80Al20, Ni33.3Zr66.7, and Pd82Si18....
متن کاملTowards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses
Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim f...
متن کاملInherent structure length in metallic glasses: simplicity behind complexity
One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and descri...
متن کاملOn the question of fractal packing structure in metallic glasses.
This work addresses the long-standing debate over fractal models of packing structure in metallic glasses (MGs). Through detailed fractal and percolation analyses of MG structures, derived from simulations spanning a range of compositions and quenching rates, we conclude that there is no fractal atomic-level structure associated with the packing of all atoms or solute-centered clusters. The res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Research
سال: 2018
ISSN: 0884-2914,2044-5326
DOI: 10.1557/jmr.2018.168